Problem 4.74

Neither Example 4.4 nor Problem 4.73 actually solved the Schrödinger equation for the Stern-Gerlach experiment. In this problem we will see how to set up that calculation. The Hamiltonian for a neutral, spin- $1 / 2$ particle traveling through a Stern-Gerlach device is

$$
H=\frac{p^{2}}{2 m}-\gamma \mathbf{B} \cdot \mathbf{S}
$$

where \mathbf{B} is given by Equation 4.169. The most general wave function for a spin- $1 / 2$ particle - including both spatial and spin degrees of freedom-is ${ }^{76}$

$$
\boldsymbol{\Psi}(\mathbf{r}, t)=\Psi_{+}(\mathbf{r}, t) \chi_{+}+\Psi_{-}(\mathbf{r}, t) \chi_{-},
$$

(a) Put $\boldsymbol{\Psi}(\mathbf{r}, t)$ into the Schrödinger equation

$$
H \boldsymbol{\Psi}=i \hbar \frac{\partial}{\partial t} \boldsymbol{\Psi}
$$

to obtain a pair of coupled equations for $\Psi_{ \pm}$. Partial answer:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi_{+}-\frac{\hbar}{2} \gamma\left(B_{0}+\alpha z\right) \Psi_{+}+\frac{\hbar}{2} \gamma \alpha x \Psi_{-}=i \hbar \frac{\partial}{\partial t} \Psi_{+} .
$$

(b) We know from Example 4.3 that the spin will precess in a uniform field $B_{0} \hat{k}$. We can factor this behavior out of our solution - with no loss of generality - by writing

$$
\Psi_{ \pm}(\mathbf{r}, t)=e^{ \pm i \gamma B_{0} t / 2} \tilde{\Psi}(\mathbf{r}, t)
$$

Find the coupled equations for $\tilde{\Psi}_{ \pm}$. Partial answer:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \tilde{\Psi}_{+}-\frac{\hbar}{2} \gamma \alpha z \tilde{\Psi}_{+}+\frac{\hbar}{2} \gamma \alpha x e^{-i \gamma B_{0} t} \tilde{\Psi}_{-}=i \hbar \frac{\partial}{\partial t} \tilde{\Psi}_{+}
$$

(c) If one ignores the oscillatory term in the solution to (b) -on the grounds that it averages to zero (see discussion in Example 4.4)—one obtains uncoupled equations of the form

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \tilde{\Psi}_{ \pm}+V_{ \pm} \tilde{\Psi}_{ \pm}=i \hbar \frac{\partial}{\partial t} \tilde{\Psi}_{ \pm}
$$

Based upon the motion you would expect for a particle in the "potential" $V_{ \pm}$, explain the Stern-Gerlach experiment.
[TYPO: Replace $\tilde{\Psi}(\mathbf{r}, t)$ with $\tilde{\Psi}_{ \pm}(\mathbf{r}, t)$.]

Solution

[^0]
Part (a)

Substitute the most general form for the wave function into the Schrödinger equation.

$$
\begin{aligned}
H \boldsymbol{\Psi} & =i \hbar \frac{\partial}{\partial t} \boldsymbol{\Psi} \\
H\left(\Psi_{+} \chi_{+}+\Psi_{-} \chi_{-}\right) & =i \hbar \frac{\partial}{\partial t}\left(\Psi_{+} \chi_{+}+\Psi_{-} \chi_{-}\right) \\
H\left(\Psi_{+}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\Psi_{-}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & =i \hbar \frac{\partial}{\partial t}\left(\Psi_{+}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\Psi_{-}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
H\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right] & =i \hbar \frac{\partial}{\partial t}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]
\end{aligned}
$$

Expand the Hamiltonian, noting that the magnetic field in Equation 4.169 on page 174 is $\mathbf{B}(x, y, z)=-\alpha x \hat{\mathbf{x}}+\left(B_{0}+\alpha z\right) \hat{\mathbf{z}}$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
i \hbar \frac{\partial \Psi_{+}}{\partial t} \\
i \hbar \frac{\partial \Psi_{-}}{\partial t}
\end{array}\right]=H\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]} \\
& =\left(\frac{\hat{p}^{2}}{2 m}-\gamma \mathbf{B} \cdot \mathbf{S}\right)\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right] \\
& =\left\{\frac{(-i \hbar \nabla)^{2}}{2 m}-\gamma\left[-\alpha x \mathrm{~S}_{x}+\left(B_{0}+\alpha z\right) \mathrm{S}_{z}\right]\right\}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right] \\
& =\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+\gamma \alpha x \frac{\hbar}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]-\gamma\left(B_{0}+\alpha z\right) \frac{\hbar}{2}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\right\}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right] \\
& =\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{\hbar \gamma}{2}\left[\begin{array}{cc}
-B_{0}-\alpha z & \alpha x \\
\alpha x & B_{0}+\alpha z
\end{array}\right]\right\}\left[\begin{array}{c}
\Psi_{+} \\
\Psi_{-}
\end{array}\right] \\
& =-\frac{\hbar^{2}}{2 m} \nabla^{2}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]+\frac{\hbar \gamma}{2}\left[\begin{array}{cc}
-B_{0}-\alpha z & \alpha x \\
\alpha x & B_{0}+\alpha z
\end{array}\right]\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right] \\
& =-\frac{\hbar^{2}}{2 m} \nabla^{2}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]+\frac{\hbar \gamma}{2}\left[\begin{array}{c}
\left(-B_{0}-\alpha z\right) \Psi_{+}+\alpha x \Psi_{-} \\
\alpha x \Psi_{+}+\left(B_{0}+\alpha z\right) \Psi_{-}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi_{+}+\frac{\hbar \gamma}{2}\left[\left(-B_{0}-\alpha z\right) \Psi_{+}+\alpha x \Psi_{-}\right] \\
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi_{-}+\frac{\hbar \gamma}{2}\left[\alpha x \Psi_{+}+\left(B_{0}+\alpha z\right) \Psi_{-}\right]
\end{array}\right]
\end{aligned}
$$

As a result, the Schrödinger equation splits into two equations, both involving Ψ_{+}and Ψ_{-}.

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial \Psi_{+}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi_{+}+\frac{\hbar \gamma}{2}\left[\left(-B_{0}-\alpha z\right) \Psi_{+}+\alpha x \Psi_{-}\right] \\
i \hbar \frac{\partial \Psi_{-}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi_{-}+\frac{\hbar \gamma}{2}\left[\alpha x \Psi_{+}+\left(B_{0}+\alpha z\right) \Psi_{-}\right]
\end{array}\right.
$$

Part (b)

Make the substitutions,

$$
\left\{\begin{array}{l}
\Psi_{+}=e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+} \\
\Psi_{-}=e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}
\end{array}\right.
$$

in the system.

$$
\begin{aligned}
& \left\{\begin{array}{l}
i \hbar \frac{\partial}{\partial t}\left(e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2}\left(e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}\right)+\frac{\hbar \gamma}{2}\left[\left(-B_{0}-\alpha z\right)\left(e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}\right)+\alpha x\left(e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}\right)\right] \\
i \hbar \frac{\partial}{\partial t}\left(e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2}\left(e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}\right)+\frac{\hbar \gamma}{2}\left[\alpha x\left(e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}\right)+\left(B_{0}+\alpha z\right)\left(e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}\right)\right]
\end{array}\right. \\
& \left\{\begin{array}{l}
i \hbar\left(e^{i \gamma B_{0} t / 2} \frac{\partial \tilde{\Psi}_{+}}{\partial t}+\frac{i \gamma B_{0}}{-2} e^{i \gamma B_{\theta} t / 2} \tilde{\Psi}_{+}\right)=-\frac{\hbar^{2}}{2 m} e^{i \gamma B_{0} t / 2} \nabla^{2} \tilde{\Psi}_{+}-\frac{\hbar \gamma B_{0}}{-2} e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}-\frac{\hbar \gamma \alpha}{2} z e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}+\frac{\hbar \gamma \alpha}{2} x e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-} \\
i \hbar\left(e^{-i \gamma B_{0} t / 2} \frac{\partial \tilde{\Psi}_{-}}{\partial t}-\frac{\overline{i \gamma B_{\theta}}}{2} e e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}\right)=-\frac{\hbar^{2}}{2 m} e^{-i \gamma B_{0} t / 2} \nabla^{2} \tilde{\Psi}_{-}+\frac{\hbar \gamma \alpha}{2} x e^{i \gamma B_{0} t / 2} \tilde{\Psi}_{+}+\frac{\hbar \gamma B_{\theta}}{2} e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}+\frac{\hbar \gamma \alpha}{2} z e^{-i \gamma B_{0} t / 2} \tilde{\Psi}_{-}
\end{array}\right.
\end{aligned}
$$

Divide both sides of the first equation by $e^{i \gamma B_{0} t / 2}$, and multiply both sides of the second equation by $e^{i \gamma B_{0} t / 2}$.

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial \tilde{\Psi}_{+}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \tilde{\Psi}_{+}-\frac{\hbar \gamma \alpha}{2} z \tilde{\Psi}_{+}+\frac{\hbar \gamma \alpha}{2} x e^{-i \gamma B_{0} t} \tilde{\Psi}_{-} \\
i \hbar \frac{\partial \tilde{\Psi}_{-}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \tilde{\Psi}_{-}+\frac{\hbar \gamma \alpha}{2} x e^{i \gamma B_{0} t} \tilde{\Psi}_{+}+\frac{\hbar \gamma \alpha}{2} z \tilde{\Psi}_{-}
\end{array}\right.
$$

$\underline{\text { Part (c) }}$
Ignore the terms with complex exponentials on the grounds that they average to zero in order to decouple the equations.

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial \tilde{\Psi}_{+}}{\partial t} \approx-\frac{\hbar^{2}}{2 m} \nabla^{2} \tilde{\Psi}_{+}-\frac{\hbar \gamma \alpha}{2} z \tilde{\Psi}_{+} \\
i \hbar \frac{\partial \tilde{\Psi}_{-}}{\partial t} \approx-\frac{\hbar^{2}}{2 m} \nabla^{2} \tilde{\Psi}_{-}+\frac{\hbar \gamma \alpha}{2} z \tilde{\Psi}_{-}
\end{array}\right.
$$

A particle in the state $\tilde{\Psi}_{+}$(with spin up) is expected to accelerate in the positive z-direction because the potential energy decreases with increasing z. Similarly, a particle in the state $\tilde{\Psi}_{-}$ (with spin down) is expected to accelerate in the negative z-direction because the potential energy decreases with decreasing z.

[^0]: ${ }^{76}$ In this notation, $\left|\Psi_{+}(\mathbf{r})\right|^{2} d^{3} \mathbf{r}$ gives the probability of finding the particle in the vicinity of \mathbf{r} with spin up, and similarly measuring its spin along the z axis to be up, and similarly for $\left|\Psi_{-}(\mathbf{r})\right|^{2} d^{3} \mathbf{r}$ with spin down.

